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Abstract. We give some result on the problem of finding the Lie point-symmetries of
autonomous systems of differential equations. In particular, we consider here the case in
which the nonlinear terms are resonant (in the sense of the Poincaré procedure for reducing
the system to normal form), and we show that Lie symmetries can be characterized in a
useful form.

In a previous paper [1], we pointed out the existence of a close relationship between
the classical Poincaré procedure for reducing a nonlinear system of ordinary differential
equations into normal form [2] and the problem of finding the Lie point-symmetries
[3-5] admitted by the system. The purpose of this paper is to provide some further
result related to the same argument.

With the same notation as in [1], we will consider autonomous differential systems
of the following form, with u=u(t}e R",

u=f(u)=Lu+h(u) (1)

where f: (1> R" is assumed to be an analytic vector field, with 0 Q< R", f(0) =0,
and L=4a,f(0) is the linear part of £ We will be concerned with time-independent Lie
point-symmetries admitted by (1): they are generated by operators of the form (for
details see [1, 3-6])

6
n=¢;(u)— ™ = p(u)3, (sumover i=1,...,n) )

and the determining equation for the functions ¢(u) is

{o.f}=0 (3)
where the (Poisson) bracket is defined by

— &f_ _J '
tof = ol =fig . 3)
In this paper we will consider the case in which all the nonlinear terms h(u) in
(1) are resonant [2]: this is an interesting case, because it is known that, due to the
Poincaré-Dulac theorem [2], any system (1) can be converted, by a formal or converging
series, into a system containing only resonant terms. The condition for the terms & to
be resonant with L can be written {2, 7]

ah
(DL‘h) —L*h L,kuka —0 (4)

i
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or, in compact form,

Dy h=(L*—(L*u) - 3)h =0 4"
where L* is the adjoint of L, and D, is the ‘homological operator’ associated with
L*_ It has been shown [7] that if the nonlinear terms h are resonant with L, then they
admit the linear symmetry generated by L*, which is

M= (L*u)au'

Unfortunately, the linear part Lu of (1) does not possess this symmetry (unless
[L, L*]=0, which just implies L diagonalizable; see also [1, proposition 4] for the
case of diagonal L; notice that in [7] only linear symmetries are dealt with). Using
this argument, we can say:

Proposition 1. If all nonlinear terms h(u) in (1) are resonant with L*, i.e. if they satisfy

D.h=0 (5)
(both if L is diagonalizable or not), then the system (1) admits the linear symmetry
n. generated by L, i.e.

o= (Lu)d,. (6)
If there is some non-zero constant matrix ® (not a multiple of L), commuting with L
and such that Dyh=(® —(Pu)  g}h=0, then

ne = (Pu)a,
is another linear symmetry for {1).

Proof. 1t is sufficient to observe that, with ¢(u)=®u, the determining equations (3)
become

[L,®Ju—Dgh=0. O

Other (nonlinear) Lie-point symmetries for (1) in the case of resonant terms can
be characterized in the form shown in proposition 2 below. In view of this, let us state
the following result, which may be of some independent interest, and whose proof
requires just some short calculation.

Lemma. Given L, if h(u) and g{u) are two vector fields resonant with L* (i.e.
Dy h =D, g=0), then also

p(u)=1{h, g}
{where the bracket {-, -} is defined as in (3'}), is resonant with L*.

Proposition 2. Assume in (1) that all the nonlinear terms h(u) are resonant with L*
(or respectively with L if L is diagonalizable}: then, there exist time-independent Lie
point-symmetries 7 = ¢(u)3, admitted by (1), such that the vector functions ¢{u} are
resonant with L* (or respectively with L). These symmetries n are also admitted by
the system

u=h(u) (7)
obtained from (1) dropping its linear part Lu. Conversely, if
7' =¢'(u)a,

is a symmetry for (7), and if ¢’ are resonant with L* (i.e. they satisfy D ¢’ =0), then
7’ is a symmetry also for the system (1).
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Proof. The determining equations (3) can now be written

DL‘P = {hs ‘P}'
The solution ¢4(u) = Lu corresponds to the linear symmetry n, (6). In order to find
other solutions, the above lemma shows that one may restrict the problem to the linear

subspace of those terms ¢ which are resonant with L*: i.e. D, ¢ =0, then one remains
with {h, ¢} =0. Conversely, consider now the system (7): its Lie symmetries n' are
rmined by the equation
{¢', h}=0. (8)
If now one can find among the solutions of (8) some ¢’ which is resonant, i.e. which
satisfies also
Dip'=0 9)
then n’= ¢'3, is also a symmetry for the inijtial problem (1}. O
Remark 1. Let us note that the above result may be useful in practice: in fact, it may

be simpler to solve (8), where the linear terms are dropped, than (3), as the example
below will show.

Remark 2. In order to satisfy (9), together with (8), it may be useful to recall that,
once a solution ¢ of (8) has been found, then also ¢ =k(u)¢’ is a solution, where
k(u) ts any ‘constant of motion’ of (7), i.e. k(u) satisfies

hi —=0.
au;
This implies that both »'= ¢'3, and 5" = ¢"3, are symmetries for (7).
Example. Let u=(x, y, z) € R’ and consider the system, where the linear part L is not
diagonalizable and the nonlinear terms satisfy D;.h =0 (cf [7]):
x=x y=x+xy F=y+xz (10)

It is immediate to verify that 5, = (Lu)d, is a symmetry for (10), as expected. It is also
simple to see that the system 4 = h{u} where the linear terms are dropped, admits,
apart from the (obvious) symmetry generator describing the dynamical flow [6]

n'=n,= xzax+xyay +xz9, = h{u)d,
the scaling symmetries
71 =y0, and nh=243,. (11)

None of the symmetries (11) is a symmetry for the initial problem (10). To obtain
symmetries for (10), taking into account remark 2, one has to multiply them by a
suitable function of the time-independent constants of motion k(x, y, z) of the problem
u = h(u), which are

ky== kp =
y

=
N

in such a way that the new symmetry ' = ¢'3,, satisfies the resonance condition D, ¢’ =0.
Proceeding in this way from (11), one obtains for instance the following symmetry
also admitted by (10)

2
y
=22z},
K (JC Z)
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Remark 3. An obvious solution of both (8) and (9) is ¢’ = h, giving ' = 5, = hd,,
which is in fact a nonlinear symmetry admitted by the initial system (1) (and by (7),
of course). Notice that the combination 7, + 1, where 7, is the linear symmetry (6),
gives just the symmetry 5, = f(u)3, which is the generator of the dynamical flow of (1).

Remark 4. Equations (3) and (8) can be solved either by the method of characteristics,
or by the Ovsjannikov procedure [3, 6]. It can be noted that, as in the Example above,
this procedure does not require that the vector functions ¢{u) are expressed as
polynomial expansions. In the case, inspired by Poincaré method, that one assumes
¢(u) of the form

e(u)=Qu+y(u)=du+ T ¢ (u)
w1

where ‘™ (u) are combinations of monomials of degree m, then the determining
equations (3) become

(12)
Dy = Doh+1{h, ¢}

Writing h(u) = Z,.,h'™(u), the second of these can be solved step by step for each
m>1, ie. [1,6]

DL')’J(M) = D¢h(m)+ v {h(a)’ l,!l(b)} (12"

(m)
where the sum is extended to all possible brackets giving monomials of degree m, thus
obtaining a (formal, or possibly converging) series. In particular, if ® commutes with

L and Dgh =0 (possibly & =0), and (%} is as in proposition 2, then (Pu+¢)a, is
a symmetry for {(1).
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