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Abstract. We give some result on the problem of finding the Lie point-symmetries of 
autonomous systems of differential equations. In particular, we consider here the case in 
which the nonlinear terms are resonant (in the sense ofthe Poineari procedure for reducing 
the System to normal form), and we show that Lie symmetries can be characterized in a 
urefvl form. 

In a previous paper [I], we pointed out the existence of a close relationship between 
the classical Poincarb procedure for reducing a nonlinear system of ordinary differential 
equations into normal form [2] and the problem of finding the Lie point-symmetries 
[3-5] admitted by the system. The purpose of this paper is to provide some further 
result related to the same argument. 

With the same notation as in [l], we will consider autonomous differential systems 
of the following form, with U = U( 1 )  E R", 

U = f (U) = Lu + h ( u )  (1) 

where f :a+ R" is assumed to be an analytic vector field, with O E ~ C  R", f(0) =0, 
and L =  J. f(0) is the linear part off: We will be concerned with time-independent Lie 
point-symmetries admitted by (1): they are generated by operators of the form (for 
details see [ I ,  3-61] 

and the determining equation for the functions ~ ( u )  is 

I P , f } = o  
where the (Poisson) bracket is defined by 

(3) 

In this paper we will consider the case in which all the nonlinear terms h ( u )  in 
( 1 )  are resonant [Z]: this is an interesting case, because it is known that, due to the 
Poincarb-Dulac theorem [2], any system ( 1 )  can be converted, by a formal or converging 
series, into a system containing only resonant terms. The condition for the terms h to 
be resonant with L can be written [2,71 
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or, in compact form, 

where L* is the adjoint of L, and DL* is the 'homological operator' associated with 
L*. It has been shown [7] that if the nonlinear terms h are resonant with L, then they 
admit the linear symmetry generated by L*, which is 

Unfortunately, the linear part Lu of (1) does not possess this symmetry (unless 
[ L ,  L*] =0, which just implies L diagonalizable; see also [ l ,  proposition 41 for the 
case of diagonal L; notice that in [7] only linear symmetries are dealt with). Using 
this argument, we can say: 

Proposition 1. If all nonlinear terms h ( u )  in (1) are resonant with L*, i.e. if they satisfy 

(both if L is diagonalizable or  not), then the system (1) admits the linear symmetry 
7 L  generated by L, i.e. 

V L =  ( L u ) J . .  ( 6 )  
If there is some non-zero constant matrix @ (not a multiple of L), commuting with L 
andsuchthat  D , h = ( @ - ( @ u ) . J ) h = O ,  then 
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DL*h E (L* - (L*u)  . J ) h  = 0 (4') 

7 L 1 = ( ~ * ~ ) ~ u .  

D ,h=O ( 5 )  

7, (@u)J.  
is another linear symmetry for (1). 

Roo$ It is sufficient to observe that, with ' p ( u ) = @ u ,  the determining equations (3)  
become 

U 

Other (nonlinear) Lie-point symmetries for (1) in the case of resonant terms can 
be characterized in the form shown in proposition 2 below. In view of this, let us state 
the following result, which may be of some independent interest, and whose proof 
requires just some short calculation. 

Lemma. Given L, if h ( u )  and g ( u )  are two vector fields resonant with L* (i.e. 
DLh = D& = 0 ) ,  then also 

p ( u ) = { h ,  gl 

[ L, @]U - D a h  = 0. 

(where the bracket { ., . }  is defined as in (3')), is resonant with L*. 

Proposition 2. Assume in (1) that all the nonlinear terms h ( u )  are resonant with L* 
(or respectively with L if L is diagonalizable): then, there exist time-independent Lie 
point-symmetries 7 = p ( u ) J .  admitted by ( l ) ,  such that the vector functions ' p (u )  are 
resonant with L* (or respectively with L). These symmetries 7 are also admitted by 
the system 

ti = h ( u )  (7) 

7'= p ' ( u ) J .  

obtained from (1)  dropping its linear part Lu. Conversely, if 

is a symmetry for (7). and if 'p' are resonant with L* (i.e. they satisfy D,'p'=O), then 
7' is a symmetry also for the system (1). 
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DLQ = { h ,  PI. 
The solution ao(u)  = Lu corresponds to the linear symmetry qL (6). In order to find 
other solutions, the above lemma shows that one may restrict the problem to the linear 
subspace of those terms Q which are resonant with L*: i.e. DLp = 0, then one remains 
with { h ,  p] = 0. Conversely, consider now the system (7): its Lie symmetries q' are 
.4e*n.....:..-A I... +I.- ^^..n *:.... 
"CIC.IIIIIIFY W J  L L L C  r q " L L , " L r  

[p', h ) = O .  (8) 

If now one can find among the solutions of (8) some p' which is resonant, i.e. which 
satisfies also 

DL9' = 0 (9) 
then q'= p'J. is also a symmetry for the initial problem ( I ) .  

Remark 1 .  Let us note that the above result may he useful in practice: in fact, it may 
be simpler to solve (8), where the linear terms are dropped, than (31, as the example 
helow will show. 

Remark 2. In order to satisfy (9), together with (8), it may be useful to recall that, 
once a solution Q' of (8) has been found, then also Q"= k(u)q '  is a solution, where 
k(u) is any 'constant of motion' of (7), i.e. k ( u )  satisfies 

Jk 
hi-==. aui 

This implies that both q'= Q'J. and $'= Q"J. are symmetries for (7) 

Example. Let U = (x, y, z) E RI, and consider the system, where the linear part L is not 
diagonalizable and the nonlinear terms satisfy D L 4  = 0 (cf [71): 

, '=x+xy i = y + x z  (10) 2 
X = X  

It is immediate to verify that qL = ( Lu)J. is a symmetry for (IO), as expected. It is also 
simple to see that the system ti = h ( u )  where the linear terms are dropped, admits, 
.par! from the (obvious) symmetry generator describing the dynamical flow [h! 

q r =  qh =x2J,+xyJ,fxza,-h(u)J, 

the scaling symmetries 

7; =yJ, and q; = zJ,. (11) 
None of the symmetries ( 1 1 )  is a symmetry for the initial problem (10). To obtain 
symmetries for (lo),  taking into account remark 2, one has to multiply them by a 
suitable function of the time-independent constants of motion k ( x ,  y, z )  of the problem 
U = h ( u ) ,  which are 

X Y k ,  =- k 2 = -  
Y 2 

in such a way that the new symmetry q'= p'J. satisfies the resonance condition D,Q'= 0. 
Proceeding in this way from ( l l ) ,  one obtains for instance the lollowing symmetry 
also admitted by (IO) 

q = (:-2z) J,. 
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Remark 3. An obvious solution of both (8) and (9) is q'= h, giving 9'= T~ = hd., 
which is in fact a nonlinear symmetry admitted by the initial system (1) (and by (7), 
of course). Notice that the combination r l r+  9 h ,  where 9L is the linear symmetry (6), 
gives just the symmetry 9, =f(u)d. which is the generator of the dynamical flow of (1). 

Remark4. Equations ( 3 )  and (8) can be solved either by the method of characteristics, 
or by the Ovsjannikov procedure [3,6]. It can be noted that, as in the Example above, 
this procedure does not require that the vector functions q ( u )  are expressed as 
polynomial expansions. In the case, inspired by Poincari method, that one assumes 
q ( u )  of the form 
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q ( u ) = @ u + + ( u ) = @ u +  +'"'(U) 
"371  

where +""'(u) are combinations of monomials of degree m, then the determining 
e-....t:-.rr I=\ 
C'I"'L.".L" ,d ,  " I I V L I L .  

Writing h ( u )  = &)h('"'(u), the  second of these can be solved step by step for each 
m>l , i . e .  [1,6] 

DL+""' = &.h'""+ {h'"', I/J'~)} (12') 
("1 

where the sum is extended to all possible brackets giving monomials of degree m, thus 
obtaining a (formal, or possibly converging) series. In particular, if commutes with 
L and D,h = 0 (possibly @ = 0), and +(U) is as in proposition 2, then (@U + +)& is 
a symmetry for (1). 
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